1,417 research outputs found

    Molecular Bremsstrahlung Radiation at GHz Frequencies in Air

    Full text link
    A detection technique for ultra-high energy cosmic rays, complementary to the fluorescence technique, would be the use of the molecular Bremsstrahlung radiation emitted by low-energy ionization electrons left after the passage of the showers in the atmosphere. In this article, a detailed estimate of the spectral intensity of photons at ground level originating from this radiation is presented. The spectral intensity expected from the passage of the high-energy electrons of the cascade is also estimated. The absorption of the photons in the plasma of electrons/neutral molecules is shown to be negligible. The obtained spectral intensity is shown to be 2×10212\times10^{-21} W cm2^{-2} GHz1^{-1} at 10 km from the shower core for a vertical shower induced by a proton of 1017.510^{17.5} eV. In addition, a recent measurement of Bremsstrahlung radiation in air at gigahertz frequencies from a beam of electrons produced at 95 keV by an electron gun is also discussed and reasonably reproduced by the model.Comment: 20 pages, 9 figures, figures (2,4,7) improved in v2, accepted by Phys. Rev.

    Report of the GDR working group on the R-parity violation

    Full text link
    This report summarizes the work of the "R-parity violation group" of the French Research Network (GDR) in Supersymmetry, concerning the physics of supersymmetric models without conservation of R-parity at HERA, LEP, Tevatron and LHC and limits on R-parity violating couplings from various processes. The report includes a discussion of the recent searches at the HERA experiment, prospects for new experiments, a review of the existing limits, and also theoretically motivated alternatives to R-parity and a brief discussion on the implications of R-parity violation on the neutrino masses.Comment: 60 pages, LaTeX, 22 figures, 2 table

    Observing Ultra High Energy Cosmic Particles from Space: SEUSO, the Super Extreme Universe Space Observatory Mission

    Get PDF
    The experimental search for ultra high energy cosmic messengers, from E1019E\sim 10^{19} eV to beyond E1020E\sim 10^{20} eV, at the very end of the known energy spectrum, constitutes an extraordinary opportunity to explore a largely unknown aspect of our universe. Key scientific goals are the identification of the sources of ultra high energy particles, the measurement of their spectra and the study of galactic and local intergalactic magnetic fields. Ultra high energy particles might, also, carry evidence of unknown physics or of exotic particles relics of the early universe. To meet this challenge a significant increase in the integrated exposure is required. This implies a new class of experiments with larger acceptances and good understanding of the systematic uncertainties. Space based observatories can reach the instantaneous aperture and the integrated exposure necessary to systematically explore the ultra high energy universe. In this paper, after briefly summarising the science case of the mission, we describe the scientific goals and requirements of the SEUSO concept. We then introduce the SEUSO observational approach and describe the main instrument and mission features. We conclude discussing the expected performance of the mission

    ESAF: Full Simulation of Space-Based Extensive Air Showers Detectors

    Full text link
    Future detection of Extensive Air Showers (EAS) produced by Ultra High Energy Cosmic Particles (UHECP) by means of space based fluorescence telescopes will open a new window on the universe and allow cosmic ray and neutrino astronomy at a level that is virtually impossible for ground based detectors. In this paper we summarize the results obtained in the context of the EUSO project by means of a detailed Monte Carlo simulation of all the physical processes involved in the fluorescence technique, from the Extensive Air Shower development to the instrument response. Particular emphasis is given to modeling the light propagation in the atmosphere and the effect of clouds. Main results on energy threshold and resolution, direction resolution and Xmax determination are reported. Results are based on EUSO telescope design, but are also extended to larger and more sensitive detectors.Comment: 38 pages, 48 figures Corrected typos. Changed content. Added figure

    Radio emission of extensive air shower at CODALEMA: Polarization of the radio emission along the v*B vector

    Full text link
    Cosmic rays extensive air showers (EAS) are associated with transient radio emission, which could provide an efficient new detection method of high energy cosmic rays, combining a calorimetric measurement with a high duty cycle. The CODALEMA experiment, installed at the Radio Observatory in Nancay, France, is investigating this phenomenon in the 10^17 eV region. One challenging point is the understanding of the radio emission mechanism. A first observation indicating a linear relation between the electric field produced and the cross product of the shower axis with the geomagnetic field direction has been presented (B. Revenu, this conference). We will present here other strong evidences for this linear relationship, and some hints on its physical origin.Comment: Contribution to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009. 4 pages, 8 figures. v2: Typo fixed, arxiv references adde

    Requirements and simulation study of the performance of EUSO as external payload on board the International Space Station

    Get PDF
    The "Extreme Universe Space Observatory - EUSO" has been conceived as the first Space mission devoted to the investigation of Ultra High Energy Cosmic Ray, using the Earth's atmosphere as a giant detector. The scientific objectives of the experiment are to observe the UHECR spectrum above the GZK energy, with an improvement of one order of magnitude in the statistics of collected events with respect to the existing experiments, in such a way to study the source distribution in a full sky survey, as well as to open the channel (set a confidence limit) on the neutrino astronomy in this energy range. Supposed to be accommodated as external payload on board the International Space Station, EUSO phase A study has been positively completed in July 2004. Nowadays, due to funding problems of the Space Agencies involved in the project, EUSO is currently on hold. Nevertheless, as result of an end-to-end simulation approach, we summarize here the expected scientific performance coming out from the phase A, as well as the expected improvements in the technical performance of the EUSO Instrument to be achieved during Phase B, in order to fulfil the scientific objectives posed as goal of the experiment

    Operations of and Future Plans for the Pierre Auger Observatory

    Full text link
    Technical reports on operations and features of the Pierre Auger Observatory, including ongoing and planned enhancements and the status of the future northern hemisphere portion of the Observatory. Contributions to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009.Comment: Contributions to the 31st ICRC, Lodz, Poland, July 200
    corecore